Journal of Thermal Analysis, Vol. 6 (1974) 279—291

A NEW INTEGRAL METHOD FOR THE KINETIC ANALYSIS OF
THERMOGRAVIMETRIC DATA

G. Gyural and E. J. GREENHOW

Chemistry Department, Chelsea College, University of London, England
(Received October 17, 1972; in revised form March 16, 1973)

Methods for the calculation of activation energies, pre-exponential factors and
reaction orders from thermogravimetric data are briefly reviewed. A new integral
method is proposed for the determination of these kinetic parameters, using data
from pairs of TG curves produced at different heating rates. Employing accurate
values of the temperature integral of the Arrhenius equation, tabulated over a range
of E and T, and a simple graphical procedure, the method offers advantages of speed
and accuracy over those previously reported. It is suggested that at least one of the
kinetic parameters should be allowed to move freely in order to achieve the best
possible fit between calculated and experimental traces.

If the thermal decomposition of a material is accompanied by weight loss,
the changes of weight can be followed by thermogravimetric measurements and,
from the data produced, valuable information can be obtained concerning the
thermal decomposition process itself.

During the course of the thermogravimetric studies the sample is heated at
elevated temperatures and the weight loss is recorded as a function of time.
A constant heating rate is usually employed, and in this case the time units can
easily be transformed into temperature units.

To obtain kinetic data (activation energy, pre-exponential factor, reaction
order) from the recorded curves, the well known kinetic equation:

dx/dt = Ae=FRT f(x) )]
or its modification containing the constant heating rate:
dx/dT = (Aja)e~"*T f(x) 2

serves as a basis for calculations, where a = d7/d¢ is the linear heating rate,
A the pre-exponential factor, E the activation energy, and x the fractional weight
of the reacted material related to the total weight loss, while R, 7 and ¢ are the
gas constant,- the absolute temperature and the time, respectively. The term
Sf(x) is a function of the weight loss and its analytical form depends on the mecha-
nism of the reaction in question. In some cases f{(x) can be expressed as (1 —x)"
where # is the reaction order. It must be pointed out that in stepwise decom-
position, such as occurs when, for example, calcium oxalate is heated, the
above equations can be used only for analysis of the separate steps.
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The evaluation of thermoanalytical data has been discussed in several review
articles [1—3]. These show two distinct approaches for the determination of
kinetic parameters from thermogravimetric measurements. Thus, the Arrhenius-
type expressions (Eqs 1 and 2) may be treated either

(a) by integral analysis, which considers the expressions as differential equa-
tions and obtains the kinetic constants from their integrated forms, or

(b) by obtaining the data in a differential form and setting the values of
dx/dt, x, and T into a suitably derived form of the expressions.

The choice between the two approaches is not simply a matter of taste since,
in the differential approach, (b), the determination of the apparent reaction
rates requires either a special derivative thermogravimetric (DTG) apparatus
or a not too accurate and lengthy procedure of graphical differentiation of the
TG curve, whereas when integral methods are used the weight loss-temperature
curves are sufficient.

The main difficulties arising in the application of integral methods are that
in the rearranged form of Eq. (2):

dx/f(x) = (Aja)e~FRT AT (3)

neither the analytical form of f(x) is known nor the right hand side of the
expression can be integrated in a finite form.

The differences between the integral methods reported in the literature are
those of the approach to, and the solution of, the integral equation:

F(x) = jx dx/f(x) = (4/a) f e FIRT T 4)
Xo To

where x, and T, are the corresponding values of the initial conversion and absolute
temperature.

The methods suggested for the solution of Eq. (4) are of two different types
as far as the integration of the right hand side is concerned. One group of
authors [4—7] suggests approximate expressions for the exponential integral,
while others [8 —10] recommend the use of numerically integrated and tabulated
values of it. Although the approximative methods are generally easier to use,
for more accurate results those methods using the accurate integral values are
to be preferred.

Doyle [8] has suggested a curve fitting method for analysing thermogravimetric
data from decomposition reactions having a known analytical form of f(x).
He assumes that the values of F(x), for the materials under consideration, are
very small at low temperatures and substitutes O for 7,. Thus:

(4/a) f e~ERT AT = (4/a) f e~EIRT g1 %)
To 0

By modifying Eq. (4) as shown in Eq. (5), and using the notation: u = E/RT;
we obtain:

F(x) = (—AEJaR) | (e="/u)du )
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where z is the value of u at the temperature corresponding to the apparent value
of x.
Introducing the notation:

P@) = — | (e “ud)du ™

the equation of the TG curves is obtained:
F(x) = (AE/aR)p(2) @®)

The values of —log p(z) have been given by Doyle for E/RT values ranging from
10 to 50.

Starting with an approximate value of £ and an assumed analytical form for
F(x), an approximate x—T7 curve can be calculated with the aid of the tabulated
—log p(z) values and compared with the experimental curve. The procedure
can be repeated with other E values until the possible best agreement of the
calculated and experimental curves has been achieved and the best-fit E value
thereby obtained.

A may be determined simultaneously with E, and is calculated on the basis
of the equation of the TG curve slope. The main drawbacks of this method are
that f(x) must be known or assumed and that the procedure is lengthy.

A more convenient and elegant procedure has been suggested by Zsako [9].
He rearranges Eq. (8) and takes logarithms to obtain the expression:

log (AE/aR) = log F(x) — log p(z) = B ©)

where B is a constant containing 4, E, R and the heating rate, the last named
remaining constant in a particular determination.

By assuming different reaction mechanisms and activation energies, series of
values for B can be calculated using the tabulated values of log p(z), which have
been given by Zsaké for different temperatures and activation energies. The
validity of the assumptions can be characterised by the standard deviation of B.
Thus the minimum standard deviation (maximum consistency) of B would show
the best E value and the maximum consistency of the decomposition process
with the assumed f(x) function. With a knowledge of the f(x) and E values the
pre-exponential factor, 4, can easily be determined. The main achievement of
Zsaké’s method is that it allows three characteristics of the decomposition process
to be determined simultaneously. The required calculations are, however, still
lengthy.

Satava and Skvara [10] have simplified Zsak$’s treatment and use a graphical
curve fitting method for the simultaneous determination of the f(x) function
and the values of £ and 4. The method is based upon Eq. (9). Values of log
p(2) have been calculated and plotted against the absolute temperature for various
activation energies. Log F(x) values corresponding to various mechanisms have
been calculated for a wide range of values of x and given in a tabulated form.
Diagrams of F(x) versus T are then constructed for assumed reaction mechanisms
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and drawn on transparent paper. By shifting this paper along the log p(z) versus
T diagram until the log p(z) and log F(x) graphs correspond perfectly, one is able
to determine the activation energy and the F(x) (f(x)) function.

More recently Satava [11] has described an improved method for determining
the f(x) function.

The advantage of the methods described by Satava and Skvara is that they
allow for identification of curve portions characterised by different reaction
mechanisms and/or activation energies. However, since the procedure used is
based on curves corresponding to discrete E values and assumed f(x) functions,
it is hardly faster than that suggested by Zsaké.

In the present paper a new method is described for the kinetic analysis of
thermogravimetric data. The method is more rapid and, in some aspects, more
advantageous than those described above. In the method we use the notation:

T
i={ e BRI 4T (10

[1]
Eq. (4) can be written:

F(x) = (A/a)i (1)

For two points of the same conversion, x, but obtained from two different TG
curves of the same material produced at different heating rates and from samples
preferably of the same initial weight, the following expressions can be written:

iy = OjT"e—E/RT AT iy = OjT“e—E/RT ar (12)
F(x)y = (4]a)in ; F(x)y = (Alag)iy (13)
F(x)n = F(x)n (14

where the first figure in the subscript indicates the TG curve and the second a
particular conversion value. Combining (13) and (14) we can write:

F(x)/F(x)g = (aa/a)/(innfi) =1 (15)
and hence:
ayfas = infis (16)
or generally expressed:
Al = falin = folls = ..... = ln/lin (17)

The i values can be calculated numerically and given in tabulated or diagrammatic
forms. For calculation purposes it is more convenient to have values of log 7.
For determination of the activation energy, the method is applied as follows:
two points of the same conversion are chosen on two TG curves obtained at
different heating rates (a; and a,) and the corresponding temperatures, 77, and
T,; noted. The values of log i corresponding to these temperatures at various
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activation energies can be obtained from the tabulated values. If we plot log
(i1/i) (here the subscripts 1 and 2 refer to the values corresponding with 73; and
Ty,) against E, the unknown E can be located as that value of E corresponding
to log (ay/ay) = log (iy/iy).

If we consider the simple cases of f(x), where f(x) = (I —x)", we can determine
the reaction order, n, in the following way, using either of the two TG curves
employed for determination of the activation energy:

When f(x) = (1—x)", the conversion integral is given by:

F(x) = { dx/(1—x)" (18)
where x, is usually chosen as zero. The expression for F(x) when n # 1 is then:
Fx) = (1(n=1D)(1/(1=x)""1)~ 1) (19)

Ifn=1:
Fx) = —1n(l—x) = 2.3 log(1—x) (20)

In the subsequent calculations the pre-exponential factor is assumed to be
constant, although this does not mean that the results should necessarily be
given in terms of 4 remaining constant in the entire reaction range.

Now, for two points on the same TG curve, we may write:

F(x)) = (4]@)i(Ey, TY); Fxy) = (4]a)i(Es, Tp) @n
Fx)[F(xp) = iEy, T)i(Es, Ty) @2

assuming, as noted above, 4 to be constant in the conversion region x; to X,.

Eq. (22) can be solved for n using a simple graphical procedure. Thus, one
chooses x, to be a constant reference conversion, such as 0.1, 0.5, or 0.9, and
calculates the ratio log (F(x)/F(x,)) for a range of values for the conversion Xx.
This ratio is then plotted against », on the basis of Eq. (19). The apparent order
for a given conversion x; can be obtained from the graph as the value of n corre-
sponding to x = x; and log (F(x))/F(xs)) = log (i(E,, T))/i(Es, Ty)). The right hand
side of Eq. (22) can be calculated on the basis of the tabulated log i values.

Having determined the analytical form of f(x) (and F(x)), the pre-exponential
factor can be calculated from the rearranged form of Eq. (11):

A = (ai)F(x) (23)
or log A =loga—log i + log F(x) (24)

Calculations and discussion

Values of log i have been calculated on a computer utilising a 32-point Gaussian
numerical integration formula. Their negative logarithms for several temperatures
and activation energies are given in Table 1.
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When the log i values were plotted against the activation energy straight lines
were obtained. A similar, linear, refationship was found to obtain between log i
and the reciprocal of the absolute temperature. In a recent work [12] we have
evaluated these relationships and found that the linearity of the log i — E and
fog i — 1/T plots can be characterised by correlation coefficients better than
0.999991 and 0.999969 respectively.

F{x}
g 0 F 565
w
T T ‘} ——

OL_.L,J..\_LL_(;.AJ' gl }
0 1 2 3

—
n

Fig. 1. Curves for determining reaction order. Reference conversion 0.035

These linear relationships are useful in expediting the calculation of activation
energy, since it is now sufficient to calenlate the log 7 values for only two different
activation energies; the log (i/in) ~ E plot can be obtained by simply laying
a straight line through these two points. Furthermore, the linearity allows the
calculation of log i values corresponding to any temperature by reciprocal inter-
polation of data in Table 1. These data are given in such a manner that log /
values can be determined to an accuracy of 107* per cent by linear interpolation
of the reciprocal temperature.
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For determination of the reaction order, n, several reference conversions
can be used. Figs 1, 2, and 3 are based on reference conversions 0.05, 0.5, and 0.9,
respectively, and cover reaction order in the range 0—3. Whenever practicable,
it is preferable to use Fig. 3 since with a reference conversion of 0.9 due to the
stronger curvature the method is less sensitive to experimental scatter,

Ly
F(05)

log

|
| Dl
G : 7 3

)

Fig. 2. Curves for determining reaction order. Reference conversion 0.5

To demonstrate the theoretical accuracy of this evaluation method, values
of the kinetic constants were calculated from theoretical curves that had been
computed in such a way as to restrict the error in the temperature integral to
within 1072 per cent. The parameters used to construct these theoretical curves
were as follows: E = 60 kcal/mol; n = 1; 4 = 10 min~*; @ = 2 and 4 deg/
min. The log (iy/iay) — E curves were calculated from log i values obtained at
50 and 70 kcal/mol activation energies for the given temperatures. For determi-
nation of the order, 0.9 was chosen as the reference comversion.

The calculations were carried out on the computer, including the simulation
of the graphical procedures to approximate the theoretical accuracy of the method.

2 J. Thermal Anal, 6 1974
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The temperature data were fed into the computer with an accuracy of three
decimal places.

Results obtained between the conversion limits 0.1 and 0.9 are shown in
Table 2. The seventh and eighth columns of Table 2 show a modification of
the calculations in which the values of the pre-exponential factor are given in
terms of a constant order. This approach is discussed below.

0 1 2 3
LN AL UL S O B

N
—

F(x)
F(0.9)

1
W

e N
_'—I__-T—_r'_T—\-'—T"‘ 1 T"_T'_Tj“‘"[_T—'—T"\'*T“—T—Tﬁ'*T

log o

Fig. 3. Curves for determining reaction order. Reference conversion 0.9

Although activation energy, pre-exponential factor, and order of reaction are
widely used to characterise processes followed by thermogravimetry and related
techniques, there has been some confusion as to the nature of these kinetic
parameters. In their methods for the interpretation of thermoanalytical data,
Doyle [7, 8] and Zsaké [9] treat all three parameters as constants, while Ozawa
[13] assumes the reaction order to be constant and calculates £ — A4 data pairs
for points on a master curve.

A serious drawback of the integral evaluation techniques reported in the
literature is in the assumption that the kinetic parameters do not change in the
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Table 2

Kinetic parameters calculated from theoretical data

) 7., K ] T, K ] E, kealjmole l n 4, min-1x10-4] % .A', min=tx 103
| |
0.1 | 819.493 ’ 843.394 ‘ 60.0024 ! 1.0006 1.002 l 0.9983 | 1.001
0.2 i 835.649 | 851.134 59.9998 0.9990 0.999 0.9983 ' 1.000
0.3 846.066 \ 861.933 59.9994 ( 0.9986 0.999 0.9983 1.000
0.4 | 854.217 | 870.386 \ 59.9992 0.9984 0.999 0.9983 ‘ 0.999
0.5 | 861.264 | 877.696 60.0002 ‘\ 0.9991 1.000 0.9983 | 1.000
0.6 867.807 | 884.486 59.9975 0.9967 0.997 0.9983 ’ 0.998
0.7 874.304 l 891.225 60.0023 ‘ 1.0009 1.002 0.9983 1.000
0.8 | 881.314 ' 898.507 \ 59.9976 0.9934 0.993 0.9983 \ 0.997
‘ l 0.999

0.9 , 890.117 | 907. 648\ 60.0014
‘ |

Theoretical data: E = 60 kcal/mole; = 1; 4 = 10" min~'; ¢ = 2 and 4°/min. 4’,
column 8, is calculated on the basis of #. T; and T, refer to heating rates of 2 and 4°/min,
respectively.

— ‘ — 0.9983

integration range. If they do, and the changes are not taken into consideration,
results obtained by these techniques will be cumulative ones, and values obtained
for a given x — T point will be characteristic only of that point on the TG curve
itself, but not of the x — 7 point in the actual reaction path. Thus results obtained
in this way merely describe the TG curve, and the question as to which parameter
or parameters should be given as constants loses its relevance.

Techniques assigning single values to the three kinetic parameters are generally
less successful from the point of view of curve fitting than those letting at least
one of the parameters move freely. The procedures described in this paper for
the determination of reaction order and pre-exponential factor can be used with
variables modified according to the required form of data interpretation. The
seventh and eighth columns of Table 2 show an example of this; here the results
are given in terms of a constant reaction order, which has been produced as an
average of orders belonging to different conversions.

Compared to integral procedures previously described, ours has several advan-
tages. For example, the activation energy can be determined from point to point;
this gives an indication as to whether or not the reaction can be characterised
"by a single F value. There is no limitation concerning the reaction mechanism,
thus complicated reactions can also be investigated by compiling the appropriate
graphs. It is possible to establish the order or other parameters of the analytical
form of f(x) by a continuous method thus avoiding the time consuming triai-
and-error curve-fitting procedures.

The calculations to establish the parameters are carried out by using full
integrals instead of approximate equations.

Several workers [13—15] have reported methods for the determination of
kinetic parameters which employ two or more TG curves in the evaluation
procedure. Ozawa’s method [13]is generally regarded as being the most reliable.
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In this he utilises Doyle’s approximation [4] for the logarithm of the p(z) term
in Eq. (8):
log p(z) = —2.315 — 0.4567E/RT 25)

and obtains the following expression for points of identical conversion on TG
curves obtained at different heating rates:

1
d Jog a/d T == 0.4567E/R

He then calculates the activation energy from the slope of the log a — 1/T
linear relationship. Doyle [7] obtained the coefficients of Eq. (25) by evaluating
the log p(z) — E/RT relationship over the range 20 < E/RT < 60. Since this
relationship is not completely linear, the use of the coefficients so calculated
gives rise to errors in the approximation [12] and, therefore, in any kinetic param-
eters determined with its aid.

In our method we have assumed that the log i — E relationship is linear. Errors
are insignificant if this assumption is applied to the vicinity of the unknown
activation energy.

The superiority of the log i — E linear approximation over the log i — 1T
approximation, which is in fact that employed by Ozawa, is discussed elsewhere
[12]. However, on statistical grounds, Ozawa’s use of more than two TG curves
in the evaluation will reduce the error arising from the scatter of experimental
results.

An approximate value for the error originating from incorrect temperature
measurement or an erroneous a;/a, value can be assessed from a formula obtained
by applying Doyle’s approximation [7] to the conditions of the present evaluation
method:

E = log (ay/a)(R[0.456 YT To/(T,—T1))

This expression shows that deviations from the assumed heating-rate ratio
or errors affecting equally the absolute values of T, and T, give rise only to
moderate changes in the calculated activation energy. The method is, however,
very sensitive to errors in the difference T,— 7. Thus if the value of T,—T; corre-
sponding to a particular a,/a; ratio is 20° and the value obtained experimentally
is 19°, the apparent activation energy, E’, is given by:

E = (0/19) E

which represents an error of about 5 per cent.

The bigger the difference between the two temperatures the smaller the signif-
icance of an error in the temperature reading or of a shift which might be due
to the slow diffusion of gaseous products. It is, therefore, advantageous to carry
out measurements at heating rates which differ as much as possible, i.e. at the
largest practicable a,/a; ratio (a, > ).

To diminish the effects of inadequate removal of gaseous products, low heating
rates, small sample size, and the application of vacuum, are recommended.

J. Thermal Anal. 6, 1974
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REsUME — On passe brievement en revue les méthodes de calcul des énergies d’activation,
des facteurs préexponentiels et des ordres de réaction a partir des données thermogravi-
métriques. On propose une nouvelle méthode d’intégration pour déterminer ces paramétres
cinétiques en utilisant les données fournies par des courbes TG groupées par paires et obtenues
avec différentes vitesses de chauffage. En employant des valeurs précises de 'intégrale de la
température de I’équation d’Arrhenius, fournies par un tableau donnant différentes valeurs
de E et de T ou obtenues par un procédé graphique simple, la méthode offre des avantages
de rapidité et d’exactitude supérieurs a ceux décrits auparavant. On propose qu’au moins
I'un des parametres cinétiques puisse varier librement afin d’assurer le meilleur ajustement
_possible entre les courbes expérimentales et calculées.

ZUSAMMENFASSUNG — Eine kurze Ubersicht {iber die Berechnungsmethoden von Aktivierungs-
energien, preexponentiellen Faktoren und Reaktionsordnungen aus thermogravimetrischen
Daten wird gegeben. Eine neue Integralmethode zur Bestimmung dieser kinetischen Para-
meter wird vorgeschlagen, die Daten von durch verschiedene Aufheizungsgeschwindigkeiten
aufgenommenen Paaren von TG-Kurven verwendet. Durch Anwendung genauer Temperatur-
Integralwerte der Arrhenius-Gleichung, welche in einem gewissen E und 7 Bereich in eine
Tabelle eingetragen werden, sowie durch ein einfaches graphisches Verfahren gestattet die
Methode Geschwindigkeit und Genauigkeit, die den frither beschriebenen iiberlegen sind.
Die freie Variationsmdoglichkeit wenigstens eines der kinetischen Parameter wird vorgeschla-
gen, um die bestmogliche Anpassung der berechneten und experimentellen Linien zu erhalten.

Pesrome — Jlan xpaTkuit 0630p METONOB pacueTa SHEPrUM AKTHBALWH, IPEIIKCIOHEHIAAIb-
HBIX ()aKTOPOB W NOPsi/IKa PEAKUHK HA OCHOBE TEPMOTPABHMETPHYECKHMX NAHHBIX. IIpedoxen
HOBHI MHTErpaJIbHbIA METOA IUIS ONPENETCHAS 3THX KMHETHYECKAX IAPaMETPOB, MCIOJbL3YS
Jaunbte nap kKpusbiX TI', CHATBHIX DPH pa3simmYHbIX CKOPOCTSX Harpesa. IIpd nDpUMEHEHHH TOY-
HBIX 3HAYCHHM TEMOEPATYIHOIO MHTEIpaja ypaBHeHWs Appenmyca, cTabyIMpOBaHHBIX IO THA-
nazoHy £ wm 7, 4 mpocroro rpaduyeckoro mpreMa, OaHHBII METOH, 1O CPAaBHEHHIO C paHee
OPENIOKEHEBEIMM, HMEET IPEHMYIIIECTBA B CKOPOCTH M TOYHOCTH.
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