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Methods for the calculation of activation energies, pre-exponential factors and 
reaction orders f rom thermogravimetric data are briefly reviewed. A new integral 
method is proposed for the determination of these kinetic parameters,  using data 
f rom pairs of TG curves produced at different heating rates. Employing accurate 
values of the temperature integral of the Arrhenius equation, tabulated over a range 
of E and T, and a simple graphical procedure, the method offers advantages of speed 
and accuracy over those previously reported. It  is suggested that  at least one of the 
kinetic parameters should be allowed to move freely in order to achieve the best 
possible fit between calculated and experimental traces. 

I f  the thermal decomposition of a material is accompanied by weight loss, 
the changes of weight can be followed by thermogravimetric measurements and, 
from the data produced, valuable information can be obtained concerning the 
thermal decomposition process itself. 

During the course of the thermogravimetric studies the sample is heated at 
elevated temperatures and the weight loss is recorded as a function of  time. 
A constant heating rate is usually employed, and in this case the time units can 
easily be transformed into temperature units. 

To obtain kinetic data (activation energy, pre-exponential factor, reaction 
order) from the recorded curves, the well known kinetic equation: 

dx/dt = Ae -Emr f (x )  (1) 

or its modification containing the constant heating rate: 

dx/dT = (A/a)e -EmT f (x)  (2) 

serves as a basis for calculations, where a = dT/dt is the linear heating rate, 
A the pre-exponential factor, E the activation energy, and x the fractional weight 
of the reacted material related to the total weight loss, while R, T and t are the 
gas constant ,  the absolute temperature and the time, respectively. The term 

f (x )  is a function of the weight loss and its analytical form depends on the mecha- 
nism of the reaction in question. In some cases f (x)  can be expressed as ( 1 - x )  n 
where n is the reaction order. It must be pointed out that in stepwise decom- 
position, such as occurs when, for example, calcium oxalate is heated, the 
above equations can be used only for analysis of the separate steps. 
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The evaluation of thermoanalytical data has been discussed in several review 
articles [1-3]. These show two distinct approaches for the determination of 
kinetic parameters from thermogravimetric measurements. Thus, the Arrhenius- 
type expressions (Eqs 1 and 2) may be treated either 

(a) by integral analysis, which considers the expressions as differential equa- 
tions and obtains the kinetic constants from their integrated forms, or 

(b) by obtaining the data in a differential form and setting the values of 
dx/dt, x, and T into a suitably derived form of the expressions. 

The choice between the two approaches is not simply a matter of taste since, 
in the differential approach, (b), the determination of the apparent reaction 
rates requires either a special derivative thermogravimetric (DTG) apparatus 
or a not too accurate and lengthy procedure of graphical differentiation of the 
TG curve, whereas when integral methods are used the weight loss-temperature 
curves are sufficient. 

The main difficulties arising in the application of integral methods are that 
in the rearranged form of Eq. (2): 

dx/f(x) = (A/a)e -E/~r aT (3) 

neither the analytical form of f (x)  is known nor the right hand side of the 
expression can be integrated in a finite form. 

The differences between the integral methods reported in the literature are 
those of the approach to, and the solution of, the integral equation: 

f ( x )  = dx/f(x) = (A/a) S e-EIRr dT (4) 
.'r To 

where Xo and T o are the corresponding values of the initial conversion and absolute 
temperature. 

The methods suggested for the solution of Eq. (4) are of two different types 
as far as the integration of the right hand side is concerned. One group of 
authors [4-7] suggests approximate expressions for the exponential integral, 
while others [8-10] recommend the use of numerically integrated and tabulated 
values of it. Although the approximative methods are generally easier to use, 
for more accurate results those methods using the accurate integral values are 
to be preferred. 

Doyle [8] has suggested a curve fitting method for analysing thermogravimetric 
data from decomposition reactions having a known analytical form of f(x).  
He assumes that the values of F(x), for the materials under consideration, are 
very small at low temperatures and substitutes 0 for T 0. Thus: 

T T 

(A/a) ~ e -E/Rr dT = (A/a) s e -E/RT dT (5) 
To 0 

By modifying Eq. (4) as shown in Eq. (5), and using the notation: u = E/RT, 
we obtain: 

z 

F(x) = ( -  AE/aR) S (e - R/u2)du (6) 
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where z is the value of u at the temperature corresponding to the apparent value 
of x. 

Introducing the notation: 

p(z) = - "5 (e-"/uZ) du (7) 
O9 

the equation of the TG curves is obtained: 

F(x) = (AE/aR)p(z) (8) 

The values of - log p(z) have been given by Doyle for E/RT values ranging from 
10 to 50. 

Starting with an approximate value of E and an assumed analytical form for 
F(x), an approximate x - T  curve can be calculated with the aid of the tabulated 
- l o g  p(z) values and compared with the experimental curve. The procedure 
can be repeated with other E values until the possible best agreement of the 
calculated and experimental curves has been achieved and the best-fit E value 
thereby obtained. 

A may be determined simultaneously with E, and is calculated on the basis 
of the equation of the TG curve slope. The main drawbacks of this method are 
that f(x) must be known or assumed and that the procedure is lengthy. 

A more convenient and elegant procedure has been suggested by Zsakd [9]. 
He rearranges Eq. (8) and takes logarithms to obtain the expression: 

log (AE/aR) = log F(x) - log p(z) = B (9) 

where B is a constant containing A, E, R and the heating rate, the last named 
remaining constant in a particular determination. 

By assuming different reaction mechanisms and activation energies, series of 
values for B can be calculated using the tabulated values of log p(z), which have 
been given by Zsak6 for different temperatures and activation energies. The 
validity of the assumptions can be characterised by the standard deviation of B. 
Thus the minimum standard deviation (maximum consistency) of B would show 
the best E value and the maximum consistency of the decomposition process 
with the assumed f(x) function. With a knowledge of the f(x) and E values the 
pre-exponential factor, A, can easily be determined. The main achievement of 
Zsak6's method is that it allows three characteristics of the decomposition process 
to be determined simultaneously. The required calculations are, however, still 
lengthy. 

Satava and Skvara [10] have simplified Zsak6's treatment and use a graphical 
curve fitting method for the simultaneous determination of the f(x) function 
and the values of E and A. The method is based upon Eq. (9). Values of log 
p(z) have been calculated and plotted against the absolute temperature for various 
activation energies. Log F(x) values corresponding to various mechanisms have 
been calculated for a wide range of values of x and given in a tabulated form. 
Diagrams of F(x) versus T are then constructed for assumed reaction mechanisms 
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and drawn on transparent paper. By shifting this paper along the log p(z)  versus 
T diagram until the log p(z)  and log F(x)  graphs correspond perfectly, one is able 
to determine the activation energy and the F(x )  ( f (x ) )  function. 

More recently Satava [11 ] has described an improved method for determining 
the f ( x )  function. 

The advantage of the methods described by Satava and Skvara is that they 
allow for identification of curve portions characterised by different reaction 
mechanisms and/or activation energies. However, since the procedure used is 
based on curves corresponding to discrete E values and assumed f(x) functions, 
it is hardly faster than that suggested by Zsak6. 

In the present paper a new method is described for the kinetic analysis of 
thermogravimetric data. The method is more rapid and, in some aspects, more 
advantageous than those described above. In the method we use the notation: 

T 

i = S e - E m T d T  (10) 
0 

Eq. (4) can be written: 

F(x)  = (A/a) i  (1 1) 

For two points of the same conversion, x, but obtained from two different TG 
curves of the same material produced at different heating rates and from samples 
preferably of the same initial weight, the following expressions can be written: 

T11 T~I 
= = f e -lzmT d T  /11 f e -Emr dT ; i21 (12) 

0 0 

F(x) j j  = (A/al)i11; F(x)21 = (A/a2)i21 (13) 

F ( x ) n  = F(x)21 (14) 

where the first figure in the subscript indicates the TG curve and the second a 
particular conversion value. Combining (13) and (14) we can write: 

F(X)ll/F(x)21 = (a2/al)/(i11/im) = 1 (15) 

and hence: 

alia., = in/i2a (16) 

or generally expressed: 

ak/al = ikl/ill = r162 . . . . . . .  ikiJiln (17) 

The i values can be calculated numerically and given in tabulated or diagrammatic 
forms. For calculation purposes it is more convenient to have values of log i. 

For determination of the activation energy, the method is applied as follows: 
two points of the same conversion are chosen on two TG curves obtained at 
different heating rates (a 1 and a2) and the corresponding temperatures, Tn and 
T21 noted. The values of log i corresponding to these temperatures at various 
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activation energies can be obtained from the tabulated values. If  we plot log 
(i~/i2) (here the subscripts 1 and 2 refer to the values corresponding with Tll and 
T21) against E, the unknown E can be located as that value of  E corresponding 
to log (alia2) = log (il/iz). 

If  we consider the simple cases off(x) ,  wheref(x)  = ( l - x )  n, we can determine 
the reaction order, n, in the following way, using either of the two TG  curves 
employed for determination of the activation energy: 

When f(x) = ( 1 - x )  n, the conversion integral is given by: 

F(x) = S dx/(1 - x) n (18) 
X0 

where Xo is usually chosen as zero. The expression for F(x) when n ~ 1 is then: 

F(x) = (1 / (n -  1) ) (1 / ( I -x)" -1)  - 1) (19) 

I f n  = 1: 

r(x) = - ln(1 - x )  = 2.3 log (1 - x )  (20) 

In the subsequent calculations the we-exponential factor is assumed to be 
constant, although this does not mean that the results should necessarily be 
given in terms of A remaining constant in the entire reaction range. 

Now, for two points on the same TG curve, we may write: 

F(x1) = (A/a)i(E1, T1); F(x2) = (A/a)i(Ez, 7'2) (21) 

r(xa)/F(x2) = i(E1, T1)/i(Ez, 7'2) (22) 

assuming, as noted above, A to be constant in the conversion region xa to x2. 
Eq. (22) can be solved for n using a simple graphical procedure. Thus, one 

chooses x2 to be a constant reference conversion, such as 0.1, 0.5, or 0.9, and 
calculates the ratio log (F(x)/F(x2)) for a range of values for the conversion x. 
This ratio is then plotted against n, on the basis of Eq. (19). The apparent order 
for a given conversion x~ can be obtained from the graph as the value of n corre- 
sponding to x = xl and log (F(xO/F(x2)) = log (i(E1, T1)/i(E2, T2)). The right hand 
side of Eq. (22) can be calculated on the basis of the tabulated log i values. 

Having determined the analytical form of f (x )  (and F(x)), the pre-exponenfial 
factor can be calculated from the rearranged form of  Eq. (11): 

A = (a/OF(x) (23) 

or log A = log a - log i + log F(x) (24) 

Calculations and discussion 

Values of log i have been calculated on a computer utilising a 32-point Gaussian 
numerical integration formula. Their negative logarithms for several temperatures 
and activation energies are given in Table 1. 
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When the log i values were plotted against the activation energy straight lines 
were obtained. A similar, linear, relationship was found to obtain between log i 
and the reciprocal of the absolute temperature. In a recent work [12] we have 
evaluated these relationships and found that the linearity of the log i - E and 
log i - 1 / T  plots can be characterised by correlation coefficients better than 
0.999991 and 0.999969 respectively. 

~ 
f x=O8 

2~- x=07 

x=0.6 

7 

.----.-,---- x=02 

0 ~ 2 3 n 

Fig. 1. Curves  fo r  de t e rmin ing  reac t ion  order .  Reference  conve r s ion  0,05 

These linear relationships are useful in expediting the calculation of activation 
energy, since it is now sufficient to calculate the log i values for only two different 
activation energies; the log (i11/&1) - E plot can be obtained by simply laying 
a straight line through these two points. Furthermore, the linearity allows the 
calculation of log i values corresponding to any temperature by reciprocal inter- 
polation of data in Table 1. These data are given in such a manner that log i 
values can be determined to an accuracy of 10 -~ per cent by linear interpolation 
of the reciprocal temperature. 
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For  determination of the reaction order, n, several reference conversions 
can be used. Figs I, 2, and 3 are based on reference conversions 0.05~ 0.5, and 0.9, 
respectively, and cover reaction order in the range 0 - 3 .  Whenever practicable, 
it is preferable to use Fig. 3 since with a reference conversion of 0.9 due to the 
stronger curvature the method is less sensitive to experimental scatter. 

x=0.9 

1 

x=08 

x=0.7 

~ ~ ~ . 5  

, _ z . c J , ~  , ,  . J!  . , a _ . ~ _ c a x A _ L ,  , ,  . . . . .  ~1 
2 3 

o 

Fig. 2. Curves for determining reaction order. Reference conversion 0,5 

To demonstrate the theoretical accuracy of this evaluation method, values 
e f  the kinetic constants were calculated from theoretical curves that had been 
computed in such a way as to restrict the error in the temperature integral to 
within 10 .3 per cent. The parameters used to construct these theoretical curves 
were as follows: E = 60 kcal/mol; n = 1; A = 101~ ra in- l ;  a = 2 and 4 deg/ 
min. The log (hl/i20 ~ E curves were calculated from log i values obtained at 
50 and 70 kcal/mol activation energies for the given temperatures, For  determi- 
nat ion of  the ordeq 0.9 was chosen as the reference conversion, 

The calculations were carried out on the computer, including the simulation 
of the graphical procedures to approximate the theoretical accuracy of the method, 

2 Jr. Thermal Anal, 6 1974 
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The temperature data were fed into the computer with an accuracy of three 
decimal places. 

Results obtained between the conversion limits 0.1 and 0.9 are shown in 
Table 2. The seventh and eighth columns of  Table 2 show a modification of 
the calculations in which the values of the pre-exponential factor are given in 
terms of a constant order. This approach is discussed below. 

0 1 2 3 n 
f 

-2 

o_ - 3 ~  

Fig. 3. Curves for determining reaction order. Reference conversion 0.9 

Although activation energy, pre-exponential factor, and order of  reaction are 
widely used to characterise processes followed by thermogravimetry and related 
techniques, there has been some confusion as to the nature of these kinetic 
parameters. In their methods for the interpretation of thermoanalytical data, 
Doyle [7, 8] and Zsak6 [9] treat all three parameters as constants, while Ozawa 
[13] assumes the reaction order to be constant and calculates E - A data pairs 
for points on a master curve. 

A serious drawback of the integral evaluation techniques reported in the 
literature is in the assumption that the kinetic parameters do not change in the 

J. Thermal Anal. 6, 1974 
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Table 2 

Kinetic parameters calculated from theoretical data 

289 

x T2, K T,t, K I E, kcal/mole n A, min-X x 10 -l` ~" IA', rain-l• 10 -xr 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

819.493 
835.649 
846.066 
854.217 
861.264 
867.807 

0.7 
0.8 
0.9 

874.304 
881.314 
890.117 

I 

843.394 60.0024 
851.134 59.9998 
861.933 59.9994 
870.386 i 59.9992 
877.696 60.0002 
884.486 59.9975 
891.225 60.0023 
898.507 I 59.9976 
907.648 60.0014 

1.0006 
0.9990 
0.9986 
0.9984 
0.9991 
0.9967 
1.0009 
0.9934 

1.002 
0.999 
0.999 
0.999 
1.000 
0.997 
1.002 
0.993 

0.9983 
0.9983 
0.9983 
0.9983 
0.9983 
0.9983 
0.9983 
0.9983 
0.9983 

1.001 
1.000 
1.000 
0.999 
1.000 
0.998 
1.000 
0.997 
0.999 

Theoretical data: E = 60 kcal/mole; n = 1; A = 10 l~ min-a; a = 2 and 4~ A', 
column 8, is calculated on the basis of ~. T,z and T4 refer to heating rates of 2 and 4~ 
respectively. 

integration range. If  they do, and the changes are not taken into consideration, 
results obtained by these techniques will be cumulative ones, and values obtained 
for a given x - T point will be characteristic only of that point on the TG curve 
itself, but not of the x - Tpoint  in the actual reaction path. Thus results obtained 
in this way merely describe the TG curve, and the question as to which parameter 
or parameters should be given as constants loses its relevance. 

Techniques assigning single values to the three kinetic parameters are generally 
less successful from the point of view of curve fitting than those letting at least 
one of the parameters move freely. The procedures described in this paper for 
the determination of  reaction order and pre-exponential factor can be used with 
variables modified according to the required form of data interpretation. The 
seventh and eighth columns of  Table 2 show an example of this; here the results 
are given in terms of a constant reaction order, which has been produced as an 
average of orders belonging to different conversions. 

Compared to integral procedures previously described, ours has several advan- 
tages. For example, the activation energy can be determined from point to point; 
this gives an indication as to whether or not the reaction can be characterised 

b y  a single E value. There is no limitation concerning the reaction mechanism, 
thus complicated reactions can also be investigated by compiling the appropriate 
graphs. It is possible to establish the order or other parameters of  the analytical 
form o f f (x )  by a continuous method thus avoiding the time consuming trial- 
and-error curve-fitting procedures. 

The calculations to establish the parameters are carried out by using full 
integrals instead of approximate equations. 

Several workers [13 -15 ]  have reported methods for the determination of  
kinetic parameters which employ two or more TG curves in the evaluation 
procedure. Ozawa's method [13] is generally regarded as being the most reliable. 

2* & Thermal Anal. 6, 1974 
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In this he utilises Doyle's approximation [4] for the logarithm of the p(z) term 
in Eq. (8): 

log p(z) --- -2 .315  - 0.4567E/RT (25) 

and obtains the following expression for points of identical conversion on T G  
curves obtained at different heating rates: 

1 
--  ~ 0.4567E/R d log a/d T 

He then calculates the activation energy from the slope of the log a - 1/T 
linear relationship. Doyle [7] obtained the coefficients of  Eq. (25) by evaluating 
the log p ( z ) -  E/RT relationship over the range 20 < E/RT < 60. Since this 
relationship is not completely linear, the use of the coefficients so calculated 
gives rise to errors in the approximation [12] and, therefore, in any kinetic param- 
eters determined with its aid. 

In our method we have assumed that the log i - E relationship is linear. Errors 
are insignificant if this assumption is applied to the vicinity of the unknown 
activation energy. 

The superiority of the log i - E linear approximation over the log i - lIT 
approximation, which is in fact that employed by Ozawa, is discussed elsewhere 
[12]. However, on statistical grounds, Ozawa's use of more than two T G  curves 
in the evaluation will reduce the error arising from the scatter of experimental 
results. 

An approximate value for the error originating from incorrect temperature 
measurement or an erroneous al/@ value can be assessed from a formula obtained 
by applying Doyle's approximation [7] to the conditions of the present evaluation 
method: 

E ~-~ log (a2/al)(R/O.4567)(T1T.2/(T2-T1)) 

This expression shows that deviations from the assumed heating-rate ratio 
or errors affecting equally the absolute values of 7"1 and T 2 give rise only to 
moderate changes in the calculated activation energy. The method is, however, 
very sensitive to errors in the difference T~-  T1. Thus if the value of T z -  J~ corre- 
sponding to a particular a2/a~ ratio is 20 ~ and the value obtained experimentally 
is 19 ~ the apparent activation energy, E' ,  is given by: 

E '  = (20/19) E 

which represents an error of  about 5 per cent. 
The bigger the difference between the two temperatures the smaller the signif- 

icance of an error in the temperature reading or of a shift which might be due 
to the slow diffusion of  gaseous products. It is, therefore, advantageous to carry 
out measurements at heating rates which differ as much as possible, i.e. at the 
largest practicable a~/aj ratio (a~ > aa). 

To diminish the effects of  inadequate removal of  gaseous products, low heating 
rates, small sample size, and the application of vacuum, are recommended. 

3. Thermal Anal. 6, 1974 
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RI~SUMt~ -- 0n  passe bri6vement en revue les m6thodes de calcul des 6nergies d'activation, 
des facteurs pr6exponentiels et des ordres de r6action b~ partir des donn6es thermogravi- 
m6triques. On propose une nouvelle m6thode d'int6gration pour d6terminer ces param6tres 
cin6tiques era utilisant les donn6es fournies par des courbes TG group6es par paires et obtenues 
avec diff6rentes vitesses de chauffage. En employant des valeurs pr6cises de l'int6grale de la 
temp6rature de l'dquation d'Arrhenius, fournies par un tableau donnant diff6rentes valeurs 
de E et de T ou obtenues par un proc6d6 graphique simple, la m6thode offre des avantages 
de rapidit6 et d'exactitude sup6rieurs ~t ceux d6crits auparavant. On propose qu'au moins 
Fun des param6tres cin6tiques puisse varier librement afin d'assurer le meilleur ajustement 
possible entre les courbes exp6rimentales et calcul6es. 

ZUSAMMENEASSUNG -- Eine kurze f0bersicht fiber die Berechnungsmethoden yon Aktivierungs- 
energien, preexponentiellen Faktoren und Reaktionsordnungen aus thermogravimetrischen 
Daten wird gegeben. Eine neue Integralmethode zur Bestimmung dieser kinetischen Para- 
meter wird vorgeschlagen, die Daten von durch verschiedene Aufheizungsgeschwindigkeiten 
aufgenommenen Paaren yon TG-Kurven verwendet. Durch Anwendung genauer Temperatur- 
Integralwerte der Arrhenius-Gleichung, welche in einem gewissen E und T Bereich in eine 
Tabelle eingetragen werden, sowie durch ein einfaches graphisches Verfahren gestattet die 
Methode Geschwindigkeit und Genauigkeit, die den friaher beschriebenen fiberlegen sind. 
Die freie Variationsm6glichkeit wenigstens eines der kinetischen Parameter wird vorgeschla- 
gen, um die bestmSgliche Anpassung der berechneten und experimentellen Linien zu erhalten. 

Pe3KgMe - -  }][an r p a T K ~  0630p MeTO~OB pacqeTa aneprnH aKTHBaLIHH, npe]/3KcnoHem2I~a~b- 
rmix ~baKTOpOB ~I nopa~ra pearunH na  OCROBe TepMorpaBnlVieTpHqecio~x jIaHR/~IX. Hpe~nmrert 
HOB/,I~ nHTerpa.rI~Ht,I~ MeTOR ~JI~l onpe,~tey~eH~n 3T~IX rrtHeTn~ec~nx rtapaMeTpoB, ~c170~,3y~ 
~ani-i~,m nap  KpaBbIX TF,  CH~ITbIX nprt pa3.rmqrrbrx CI~OpOCT~IX narpeaa .  1-Ipn HpI, IMeHeHnn TOt/- 
m,LX 3Haqeuri~ TeMnepaTyrlnoro nr~Terpana ypaaHeHna Appenrtyca,  cTa6yJIHpoBaHHbIX 170 ]xHa- 
na30rIy E ~ T, n npocToro  rpaqbnqecroro nprteMa, ~anm, i~ MeTOR, riO cpaBHeHI, no c paI~ee 
npe~o>reHrmr~H, HMe~T 17peHMymeCTBa 13 cKopocTH n TOtlHOCTH. 
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